Measurements of Neutral Kaons and Lambdas Production on Au+Au collisions at 62 GeV

Karin Silvia Franzoni Fornazier Guimarães IPR-DFN-IFUSP-Brazil

- Motivation
 - QCD Phase Diagram
 - **Strangeness Production**
 - Why 62 GeV?
- STAR (Solenoidal Tracker At RHIC)
 TPC
 SVT
- Analysis
 - VO Reconstruction
- Preliminary Results

Hadronic Matter x QGP

 $\frac{4\alpha_s}{kr}$ 3r

QGP Latest definition

"A locally thermally equilibrated state of matter in which quarks and gluons are deconfined from hadrons, so that color degrees of freedom become manifest over nuclear, rather than merely nucleonic, volumes."

April 18, 2005

QGP

Time Evolution of nucleus-nucleus collisions

Hard Parton Scattering

Collision Dynamics

Intermediate

Thermalization

Final Hadronization

Size and

Temperature

p_t spectra

High p_t particles

Jets

Mini-jets

Strangeness

High Energy γ s

Anti-Baryons

Charmed Mesons

ø meson

Strangeness Production

Hadronic Gas

Need much more energy to produce "strange particles":

 $\pi + N \rightarrow \Lambda + K \ (Q=530 \ MeV)$ (endotermic)

 $K + \overline{N} \rightarrow \overline{\Lambda} + \pi$ (exotermic)

Quark Gluon Plasma

- (J. Rafelski, B. Müller, PRL 48 (1982), 1066)
 - Less energy is necessary to produce "strange" particles

$$g + g \rightarrow s + \overline{s}$$
 (Q $\approx 2m_s \approx 300 MeV$)

Why 62 GeV?

Following "step by step" the evolution

Cheking if this evolution is *smooth* or not

STAR

TPC - Time Projection Chamber

Cylindrical gas-filled tracking chamber

4.0 m in diameter

Inner radius 50 cm

$$p_t > 150 \, MeV/c$$

Primary Track Reconstruction

Good Efficiency for pt > 40 MeV/c

Secondary Track Reconstruction

•Superior position resolution

•Identification and reconstruction of decay vertices

•Reducing the combinatoric background

Statistically significant sample of *short lived particles*

Particle	Quark Content	Dominant decay mode	Lifetime (c τ)
K ±	(us,us)	$\mu_{\pm} + \nu_{\mu}$	3.7 m
K ⁰ _s	(ds+ds)	$\pi^+ + \pi^-$	2.7 cm
φ	SS	K++ K-	44.6 fm
Λ	uds	$p + \pi^{-}$	7.9 cm
Ξ-	dss	$\Lambda + \pi^{-}$	4.9 cm
Ω-	SSS	Λ+ Κ-	2.5 cm

Real Tracks

Track Reconstruction

$$M_{invariant} = \sqrt{\left(E_1 + E_2\right)^2 - p_{mother}^2}$$

$$p_{mother}^{2} = (p_{x1} + p_{x2})^{2} + (p_{y1} + p_{y2})^{2} + (p_{z1} + p_{z2})^{2}$$

Selecting Cuts

Dca Positive Daughter to PV

Real Data Kaon and Lambda (TPC)

Correction Factors

Geometrical Acceptance

Reconstruction Efficiency

Daughters do NOT make it into the detector Particle pass the acceptance but are <u>NOT</u> reconstructed

Only one daugther is reconstructed

They are not formed into V0 candidates

Fail the Geometrical Cuts

Particle decayed in another mode

Process which envolves

Generation of the Monte Carlo Particles

Their simulation on TPC

Taking a real event

Event Reconstruction

Association Process between MC and reconstruction information

Embedding

Real Data 🔴

Total Correction

Acceptance = Number of particles that pass on Geometrical Cuts Number of particles that are generated

Efficiency = Number of Particles that are reconstructed

Number of Particles that are accepted

Total = Acceptance X Efficiency X Branching Ratio Correction Efficiency and Acceptance (TPC)

- Include the SVT in Analysis
- Compare the results between TPC and SVT
- Statistical Analysis
- Theoretical Models