Método do Cavalo de Tróia

Possibilidades e Aplicações

Marcelo Gimenez Del Santo orientador: Marcelo Gameiro Munhoz

Universidade de São Paulo - USP Instituto de Física - IF Departamento de Física Nuclear - DFN

- 1) Tópicos em Astrofísica
- 2) Método do Cavalo de Tróia (THM)

Aplicação

- 3) Grupo de Colaboração Resultados Recentes
- 4) Reações de Interesse Astrofísico

Núcleos Leves

5) Reações Propostas

Energia do Feixe

Arranjo Experimental

Pico de Gamow

Fator Astrofísico S(E)

$$S(E) = E \sigma(E) \exp(2\pi\eta)$$
$$\eta = 4.98 Z_1 Z_2 (\mu/E)^{1/2}$$

Extrapolação

Blindagem Eletrônica "electron screening"

Método do Cavalo de Tróia

[Baur (1986)],[Spitaleri(1999)]

$$(A) + (a) + (c) + (c) + (b)$$

Obter o fator Astrofísico S(E) (partículas carregadas) de uma reação de 2 corpos selecionando a contribuição quase - livre de uma reação de 3 corpos apropriada

utilizando núcleo **cavalo de tróia** cluster a = b + x com **distribuição de momentos** conhecida

Formalismo do THM (PWIA)

Método do Cavalo de Tróia - Condição Quase - Livre

energia relativa A-a acima da barreira Coulombiana

baixas energias alcançadas A-x

O espectador b deve manter a mesma distribuição de momentos que ele tinha dentro do núcleo cavalo de tróia. sem blindagem eletrônica sem supressão Coulombiana

S_B(E)

Núcleos Cavalo de Tróia

Núcleos com estrutura de "cluster"

Núcleo	"clusters"	s" Energia ligação (MeV)	
$^{2}\mathrm{H}$	p - n	2,225	
Ъ	d - n	6,257	
³Не	d - p	5,494	
۴Li	α - d	1,475	
⁷ Li	α - t	2,468	
⁷ Be	α- ³ He	1,587	
°Be	α- ⁵ He	2,467	
¹⁶ O	a - ¹² C	7,162	

Feixes indiretos: n,p,d,t,a,³He,⁵He

Cálculo da Energia do feixe

Figura 4.7: Simulação do "butterfly diagram": a região de interesse astrofísico (entre as linhas horizontais) onde E_{CM} > 0 MeV possui uma forte contribuição do mecanismo QF com |p_n| < 30 MeV/c (linhas tracejadas vermelhas).

Arranjo

PSD e CI

ETNA Collaboration
Experimental Techniques on Nuclear Astrophysics

Reações já estudadas

J. Phys. G: Nucl. Part. Phys. 35 (2008) 014008

S Romano et al

Two-body reaction	Three-body reaction	S(0)(dir) MeVb	S(0)(THM) MeVb	Reference
$^{6}\text{Li}(d, \alpha)\alpha$	⁶ Li(⁶ Li, αα)α	17.4	19.9 ± 0.5	[8]
${}^{6}\text{Li}(p,\alpha){}^{3}\text{He}$	$d(^{6}\text{Li}, \alpha^{3}\text{He})n$	2.86	3.00 ± 0.19	[7, 18]
7 Li $(p, \alpha)\alpha$	$d(^{7}\text{Li}, \alpha\alpha)n$	0.059	0.055 ± 0.003	[8]
7 Li $(p, \alpha)\alpha$	7 Li(3 He, $\alpha\alpha$)d	0.059	_	[9]
${}^{9}\text{Be}(p,\alpha){}^{6}\text{Li}$	$d({}^{9}\mathrm{Be}, \alpha^{6}\mathrm{Li})n$	_	-	[19]
${}^{10}\mathrm{B}(p,\alpha)^{7}\mathrm{Be}$	$d(^{10}\mathrm{B}, \alpha^7\mathrm{Be})n$	_	_	[20]
${}^{11}\mathrm{B}(p,\alpha)^{8}\mathrm{Be}$	$d(^{11}\mathrm{B}, \alpha^8\mathrm{Be})n$	2.1	0.4 ± 0.1	[5, 17]
$^{3}\text{He}(d, p)\alpha$	$^{6}\text{Li}(^{3}\text{He}, p\alpha)\alpha$	6.11	5.1 ± 1.1	[21]
$d(d, p)^{3}$ H	$d(^{6}\text{Li}, p^{3}\text{H})\alpha$	_	_	[22]
${}^{15}N(p, \alpha){}^{12}C$	$d(^{15}N, \alpha^{12}C)n$	65 ± 4	62 ± 10	[23]
${}^{19}F(\alpha, p){}^{22}Ne$	⁶ Li(¹⁹ F, p ²² Ne)d	_	_	Data analysis in progress
${}^{18}O(p, \alpha){}^{15}N$	$d(^{18}\text{O}, \alpha^{15}\text{N})n$	_	_	[24]
$^{6}\text{Li}(n,\alpha)^{3}\text{H}$	$d(^{6}\text{Li}, \alpha^{3}\text{H})p$		_	[25]
p(p, p)p	d(p, pp)n	-	_	[26]

Table 3. Reactions investigated by means of the THM.

 8 Li + 4 He \rightarrow 11 B + n

M. LA COGNATA et al. PHYSICAL REVIEW C 76, 065804 (2007)

Reações propostas no artigo

J. Phys. G: Nucl. Part. Phys. 35 (2008) 014008 (7pp)

<u>Feixes Pelletron:</u>^{1,2}H,^{6,7}Li,^{10,11}B,^{12,13}C, ^{16,17,18}O, ¹⁹F, ^{28,29,30}Si,^{35,37}Cl, ⁹Be, I, Au ???

Table 4. Reactions that can be studied by means of the THM.

Two-body reaction	Indirect reaction			
d(d, p)t	$d(^{3}\text{He}, pt)p$			
$d(d, n)^3$ He	$d(^{3}\text{He}, n^{3}\text{He})p$			
${}^{9}\text{Be}(p,d){}^{8}\text{Be}$	$d({}^{9}\mathrm{Be}, d{}^{8}\mathrm{Be})n$	E ₀ = 18 keV	E _{9Be} = 22,4 MeV	
$^{12}C(^{12}C, \alpha)^{20}Ne$	$^{12}C(^{16}O, \alpha^{20}Ne)\alpha$	E_0^{-} = 147 keV	E_{12C}^{12C} = 14,6 ou E_{16C} = 19,5 Me	ż۷
$^{12}C(\alpha, \alpha)^{12}C$	${}^{6}\text{Li}({}^{12}\text{C}, ^{12}\text{C})d$		100 100	
¹² C(¹² C, ²³ Na)p	$^{12}C(^{16}O, p^{23}Na)\alpha$	E ₀ = 147 keV	E_{12C} = 14,6 ou E_{16O} = 19,5 MeV	V
$^{13}C(\alpha, n)^{16}O$	$^{6}\text{Li}(^{13}\text{C}, n^{16}\text{O})d$	E ₀ = 81 keV	E_{13C}^{110} = 6,6 ou E_{6Li}^{110} = 3,0 MeV	
22 Ne $(\alpha, n)^{25}$ Mg	$^{6}\text{Li}(^{22}\text{Ne}, n^{25}\text{Mg})d$			
$^{17}O(p, \alpha)^{14}N$	$d({}^{17}\text{O}, ^{14}\text{N})n$	E _o = 24 keV	E ₁₇₀ = 40 ou E _d = 4,8 MeV	
22 Ne $(n, \alpha)^{19}$ O	$d(^{22}\text{Ne}, \alpha^{19}\text{O})p$	-		
$^{18}F(p, \alpha)^{15}O$	$d({\rm ^{18}F},\alpha {\rm ^{15}O})n$			

Resolução - Parede de Nêutrons ??? $E_{CM} = E_{rel} - Q_{2Bodv}$ $E_{rel} = \mu (E_1/m_1 + E_2/m_2 - sqrt(E_1E_2 / m_1m_2))$. cos($\theta_1 + \theta_2$) Resolução em posição do PSD 0,3 mm $PSD1 d = 56 cm 0,030^{\circ}$ $PSD2 d = 28 cm 0.015^{\circ}$ Resolução em energia do PSD 5% da energia da alfa de ~ 5 MeV Melhor Resolução possível $E_{CM} \sim 5$ KeV Parede de Nêutrons Resolução do experimento = PSD(0,03) d=15 mpar PSD1-PSD3 ~ 30 keV = 0.1 d= 5 m

Diagrama de Hertzsprung-Russel HR

Diagrama de Hertzsprung-Russell adaptado de Powell. São mostradas 22.000 estrelas do Catálogo de Hiparcos e 1.000 do catalogo Gliese de estrelas próximas.

Li Be B Nucleossíntese

Elementos Leves

<u>Primordial</u> BBN (²H,³He,⁴He,⁷Li,...) IBBN (...,⁶Li,⁷Li,⁹Be,¹⁰B,¹¹B,...)

<u>Inter-Estelar</u> Raios Cósmicos Galáticos (GCR) (⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B)

<u>Estelar</u> (p-p, CNO, p, r, s,...) Li(p,a) Be(p,a) B(p,a) Estrutura interna da estrela Mecanismos de mistura

Nucleossíntese Primordial

IBBN Nucleossíntese Primordial

 η_{10}

Nucleossíntese Inter-Estelar

Reações de Espalação	$p + {}^{12}C \rightarrow {}^{11}B + 2p \ (Q = -16MeV)$		
(fragmentação)	$p + {}^{12}C \rightarrow {}^{10}B + 2p + n \ (Q = -27 MeV)$		
raios cósmicos galácticos GCR (p,)	$p + {}^{12}C \rightarrow {}^{9}Be + 3p + n (Q = -34 MeV)$		
+	$p + {}^{12}C \rightarrow {}^{7}Li + 4p + 2n (Q = -53 MeV)$		
núcleos do meio inter-estelar (CNO,)	$p + {}^{12}C \rightarrow {}^{6}Li + 4p + 3n (Q = -60 MeV)$		

Núcleo	Abundância prevista pela nucleossíntese GCR (X 10 ⁻¹²)	Abundância cósmica observada (X 10 ⁻¹²)	Razão entre previsão e observação
Li/H	116	970	0,12
⁰Li/H	45	70	0,64
²Li∕H	66	900	0,07
%Be/H	16	14	1,14
B/H	169	150	1,13
¹⁰ B/H	51	30	1,70
¹¹ B/H	118	120	0,98

Nucleossíntese Estelar

Queima do Li, Be e B \longrightarrow Reações (p,a), (p, γ), (a,n), (a, γ)

Depleção de LiBeB (em estrelas F - G da sequência principal)

<u>Mecanismos de Mistura:</u>

CONVECÇÃO DIFUSÃO MICROSCÓPICA MISTURA INDUZIDA POR ROTAÇÃO Correlação entre abundâncias, idade e velocidade de rotação

[Boesgaard (2004)]

O Estudo de Reações Nucleares é a principal ligação entre Astrofísica

Física Nuclear

Supernova Cassiopeia A (foto: NASA)

A reação ¹⁰B(p,a)⁷Be no ambiente Astrofísico

Principal responsável pela **destruição** do ¹⁰**B** no meio estelar

Energia de Gamow ~ 10 keV

Ocorre principalmente através do estado de onda s ressonante (8.70 MeV) do núcleo composto ¹¹C Γ = 16 KeV E₀= 10 KeV [Wiecher (1983)]

os dados diretos não alcançam a região da energia de Gamow [ANGULO (1993)] [YOUN (1991)]

Estudo da reação ¹⁰B(p,a)⁷Be Através do Método do Cavalo de Tróia Usando a reação de 3 corpos ²H(¹⁰B,a⁷Be)n

Cavalo de Tróia 2H- estrutura do *cluster* d = p + n - energia de ligação 2,224 MeV compensa a energia do feixe $E_{qf} = E_{p-10B} - B_d$ $0,01 = E_{p-10B} - 2,224$ $E_{feixe} = 24,4 \text{ MeV}$

alvo

Arranjo Experimental

Laboratori Nazionale del Sud Catania – Italia

Acelerador Tandem ¹⁰B @ 24.4 MeV Intensidade 1.5 nA Alvo CD₂ - espessura 200 µg/cm² 3 detetores sensíveis a posição PSD ∆E gas isobutano - pressão 40mbar

Calibração em Posição e Energia

Identificação do ⁷Be

Reconstrução dos eventos

assumindo massa = 1 para a terceira partícula (não identificada)

Seleção dos eventos da reação ²H(¹⁰B,a⁷Be)n Q= -1.078 MeV

Locus Cinemático E_a vs. E_{7Be}:

Identificação dos mecanismos QF e DS

Mecanismos de decaimento sequencial estados excitados do ¹¹C, ⁸Be e ⁵He

$$Q_{11C->7Bea} = 7,544 \text{ MeV}$$

 $0,876 + 7,544 = 8,42 \text{ MeV}$
 $1,156 + 7,544 = 8,70 \text{ MeV}$
 $do \ {}^{11}C$

Reconstrução das energias relativas

Correlação entre o momento do espectador e o número de contagens

Evidências do mecanismo QF Mecanismo guase-livre

$$|\phi(p_s)^2| \propto \frac{\frac{d^3 \sigma}{dE_{CM} d \Omega_{\alpha} d \Omega_{7Be}}}{KF. \left(\frac{d \sigma}{d \Omega}\right)_{10B-p}}$$

Distribuição Experimental de momentos

Seleção dos eventos $|p_s| < 20 \text{ MeV/c}$

Potencial de blindagem eletrônica U_e

Sistema		Ue (eV)	
	Teoria *	Teoria ^b	experimental
H + He	108	99	120±20 °
H + Li	180	162	420±120 ^d
H + ¹¹ B	340	304	430±80 °
H + ¹⁰ B	340	304	436 ± 60

Potenciais de blindagem eletrônica teóricos e experimentais. a) [Peterson et al. (1975)] e [Angulo et al. (1993)], b) [Becker et al. (1987)], c) [Engstler et al. (1988)], d) [Engstler et al. (1992)], e) [Angulo et al. (1993)], f) presente trabalho.

Conclusões ¹⁰B(p,a)⁷Be

A determinação do fator astrofísico dessa reação é fundamental para o entendimento de processos agindo no interior das estrelas

2 novos pontos para energias abaixo de 20 KeV

S(0) ~ 1500 MeV.b [Angulo (1993)] ---> 644 (100) MeV.b

U_e = 430 eV (adaptado do ¹¹B) ---> 436 (60) eV

O S(E) obtido poderá ser usado em códigos de simulação de evolução estelar como o FRANEC

A diminuição da seção de choque desta reação não influencia a produção de energia nas estrelas devido a baixa abundância de 10B.

A reação ¹¹B(p,a)⁸Be no ambiente Astrofísico

Estudo da reação ¹¹B(p,a)⁸Be

Através do Método do Cavalo de Tróia

Usando a reação de 3 corpos ²H(¹¹B,a⁸Be)n

Cavalo de Tróia

- núcleo ²H
- estrutura do cluster d = p + n
- energia de ligação 2,224 MeV
 compensa a energia do feixe

Eq.f. = 27,2(1/12) - 2.224 ~ 50 KeV

Energia disponível para o ¹¹B-p no sistema C.M.

Arranjo Experimental

Laboratori Nazionale del Sud Catania – Italia

Acelerador Tandem ¹¹B @ 27,2 MeV Intensidade 1.5 nA Alvo CD₂ – espessura 200 ug/cm² 10 detetores sensíveis a posição PSD sendo: 4 DPSD

2 PSD

Próximas Etapas

Obter o fator astrofísico da reação ¹¹B(p,a₁)⁸Be através do THM e comparar comos dados diretos.

Obter o potencial de blindagem eletrônica para o sistema 11B - H utilizando o THM.

O estudo dessa reação é complementar aos estudos propostos e iniciados pelo grupo italiano do professor Spitaleri

Análise da reação d(d,n)³He do experimento realizado no Nuclear Physics Institute of ASCR, Rez – República tcheca – Out/2007 O estudo dessa reação é complementar ao da reação d(d,p)³H o qual está em andamento pelo grupo italiano do professor Spitaleri

d(³He,pn)³He