Pelletron-Linac Neutron Wall Detector

Marcelo Gimenez Del Santo IFUSP - Brazil

Talk outline

- Motivation
- The Neutron Wall Detector
- Neutron Detection
- Pulse Shape Discrimination (PSD)
- The ⁷Li(p,n)⁷Be Experiment
- Efficiency, Time Resolution, Position Resolution
- The Neutron Wall in Future Experiments

Motivation

Many interesting aplications;

Neutron correlations;

 Reactions of astrophysical interested, involving stable and unstable nuclei;

Motivation

Nucleosynthesis scenarios

Red Giant Stars Reactions involving unstable heavy-light 10 nuclei (as ^{8,9}Li) Inhomogeneous Ζ **Big Bang**

Motivation

Interesting astrophysical reactions

 αp - Process

Interesting Reactions:

6He(α ,n) e 6He(p,n) 10Be(α ,n) e 10Be(p,n) 12B(α ,n) e 12B(p,n) 16N(α ,n) e 16N(p,n) 20F(α ,n) e 20F(p,n)

The Neutron Wall Array Detector

Design considerations

- Increase the angular acceptance of the array by increasing its area
- Greatly decrease the dead space between the individual detectors
- Reduce the inactive (non-scintillator) mass throught which the neutrons must pass to reduce out-scattering
- While increasing the area decrease the ratio of the number of electronic channels to the scintillator volume

The Neutron Wall Detector Neutron Wall array characteristics

- Total area : 2x2 m²
- Inactive area less than 12%
- Position-sensitive neutron detection
- Two independent walls
- Aluminium frames
- Each whit 24 detector cells
- Scintillator BICRON 501A
- The gas monitor detects high levels of xylene

Based on the Michigan State University Neutron Wall project

The Neutron Wall Detector

reservoit with kynar

The cell

- Total length: 2m
- Pyrex cells filled with liquid organic scintilator BICRON 501A
- Two PMTs view the cell from both ends
- Surrounding each PMT there is a $\mu\text{-metal}$ shield
- The tubing and fittings are made of Teflon being chemically resistant to scintillator
 scintilator expansion

The Neutron Wall Detector

Neutron Detection

Neutron Detection in Pelletron-Linac Neutron Wall

Fast Neutrons (
$$E_n > 1 \text{ MeV}$$
) detection

Organic scintillator

Photomultiplier

Elastic scattering

$$E_R = \frac{4A}{\left(1+A\right)^2} \left(\cos^2\theta\right) \cdot E_n$$

if A=1
$$\rightarrow$$
 E_R = E_R^{MAX}

Organic Scintillator

Basic Principle:

Luminescence/Fluorescence

Absorption of energy and emission in the form of visible radiation

Scintillator Efficiency

$$\varepsilon = 1 - \exp(-N \cdot \sigma \cdot d)$$

where:

- **N** nuclei density ;
- σ neutron scattering cross section;
- **d** distance covered by the neutron inside the detector.

Neutron Detection

Scintillator composition

nucleus	A	$\frac{E_{R\max}}{E_n} = \frac{4 \cdot A}{\left(1 + A\right)^2}$
н	1	1
² H	2	0,889
³ He	3	0,75
4He	4	0,64
¹² C	12	0,284
¹⁶ O	16	0,221

Ratio of energy tranfered from the neutron to diferent nucleus

Process	σ _R (24MeV)
$n + p \rightarrow n + p$	0,406 b
n + C → n + C	0,900 b
$n + C \rightarrow n + C' + \gamma$ (4,44MeV)	0,104 b
n + C → He + Be – 5,71MeV	0,048 b
$n + C \rightarrow n + 3\alpha - 7,26 MeV$	0,210 b

Cross sections for some process

BICRON 501A – Liquid Scintillator - Ratio H:C Atoms = 1.2

Basic Elements

- Organic Scintillator
 Photomultiplier
- Electronic Base of the photomultiplier

Organic Scintillator	Photomultiplier	Electronic Base

Photomultiplier

Scintillator Caracteristics

- High efficiency in the conversion of the energy of excitement for fluorescent radiation;
- Transparency of the scintillator material for this radiation;
- Consistent spectral emission with the sensitivity of the photomultiplier;
- Short decay time (τ) ;

Pulse Shape Discrimination (PSD)

The scintillator detector is sensitive to more than just neutrons

Large background of γ-rays and cosmic-rays

For some scintillator the shape of the pulse varies according to the specific ionization of the particle

Time

Light emission

The energy re-emission process is described in the equation below:

$$N = A \exp\left(\frac{-t}{\tau_f}\right) + B \exp\left(\frac{-t}{\tau_s}\right) \qquad \text{iff} \qquad \text{$$

where:

- **N** number of photons emitted in the instant *t*;
- τ_{f} decay constant of the prompt fluorescence component;
- τ_s decay constant of the delayed fluorescence component;

Pulse Shape Discrimination

Pulse shape differences of BICRON 501A liquid scintillator light for neutrons ang gamma rays. The integral of the light pulses is also show. A discrimination between these radiations is possible

Pulse Shape Discrimination

Neutron Wall Pulse Shape Discrimination (PSD)

Pulse Shape Discrimination

Neutron Wall Pulse Shape Discrimination (PSD)

amplitude

Neutron Wall Electronic

What is measured ?

- 1. Total signal integral (QTOTAL);
- 2. Prompt component integral (QFAST);
- 3. Time signal of each event relative to another reference signal common to all the cells (TDC). This reference signal can be generated by a charged particle detector;

To test fully the functionality of the detector, it was used the ⁷Li(p,n)⁷Be reaction, a reaction that produces only one neutron whose angular and energy distribution are well know;

Efficiency

- The studied reaction gives one neutron for each ⁷Be nucleus;
- The ⁷Be efficiency detection is next to 100%;
- The Neutron Wall Detector efficiency can be calculate using the ratio between the neutron events and the ⁷Be events;

$$\varepsilon = \frac{316}{28552} \cdot 100\% \simeq 1\%$$

$x = v \cdot (TDC_{left} - TDC_{right})$

where:

v = 1.44(14).10⁸ m/s is the effective
velocity of the light inside the cell

Intrinsic Time Resolution

$$P.R. = 0.8ns \cdot 1.44 \cdot 10^8 \frac{m}{s} = 11cm$$

The Neutron Wall Array in future experiments

¹³C(α,n)¹⁶O reaction Trojan Horse Method with the Li,Pb fusion ⁶Li(¹³C,n¹⁶O)d reaction

You can also propose an experiment !

contact us !